Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715090

RESUMO

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Assuntos
Encéfalo , Citocinas , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento , Placenta , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Feminino , Animais , Gravidez , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/embriologia , Placenta/metabolismo , Placenta/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/metabolismo , Poli I-C/toxicidade , Transcriptoma , Modelos Animais de Doenças , Feto/metabolismo
2.
J Neurodev Disord ; 16(1): 21, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658850

RESUMO

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Células-Tronco Pluripotentes Induzidas , Succinato-Semialdeído Desidrogenase , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/genética
3.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432637

RESUMO

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Fator 6 de Ribosilação do ADP , Mutação com Perda de Função , Citocinese/genética , Masculino , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Feminino
4.
Redox Biol ; 70: 103070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359745

RESUMO

Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.


Assuntos
Doenças Fetais , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Camundongos , Animais , Etanol/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Camundongos Knockout , Estresse Oxidativo , Dano ao DNA , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo
5.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387458

RESUMO

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipídeos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
6.
Adv Drug Deliv Rev ; 207: 115218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403255

RESUMO

Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.


Assuntos
Bainha de Mielina , Transtornos do Neurodesenvolvimento , Humanos , Bainha de Mielina/metabolismo , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/metabolismo , Sistemas de Liberação de Medicamentos , Oligodendroglia/metabolismo
7.
Dev Neurosci ; 46(1): 1-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231803

RESUMO

The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.


Assuntos
Transtornos do Neurodesenvolvimento , Neurônios , Masculino , Humanos , Neurônios/metabolismo , Córtex Cerebral/metabolismo , Linhagem da Célula/fisiologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transdução de Sinais , Neurogênese/fisiologia , Diferenciação Celular/fisiologia
9.
Structure ; 31(8): 891-892, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541190

RESUMO

In this issue of Structure, Gonzalez et al. present the cryo-EM structure of Karyopherin-ß2 bound to the proline-tyrosine nuclear localization signal (PY-NLS) of heterogeneous nuclear ribonucleoprotein H2 (HNRNPH2). The structure advances our understanding of not only the diversity of PY-NLSs but also the pathogenic mechanisms arising from HNRNPH2 variants.


Assuntos
Transtornos do Neurodesenvolvimento , Sinais de Localização Nuclear , Humanos , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismo , Carioferinas/metabolismo , Tirosina/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Núcleo Celular/metabolismo
10.
Med Mol Morphol ; 56(4): 266-273, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402055

RESUMO

WAC is an adaptor protein involved in gene transcription, protein ubiquitination, and autophagy. Accumulating evidence indicates that WAC gene abnormalities are responsible for neurodevelopmental disorders. In this study, we prepared anti-WAC antibody, and performed biochemical and morphological characterization focusing on mouse brain development. Western blotting analyses revealed that WAC is expressed in a developmental stage-dependent manner. In immunohistochemical analyses, while WAC was visualized mainly in the perinuclear region of cortical neurons at embryonic day 14, nuclear expression was detected in some cells. WAC then came to be enriched in the nucleus of cortical neurons after birth. When hippocampal sections were stained, nuclear localization of WAC was observed in Cornu ammonis 1 - 3 and dentate gyrus. In cerebellum, WAC was detected in the nucleus of Purkinje cells and granule cells, and possibly interneurons in the molecular layer. In primary cultured hippocampal neurons, WAC was distributed mainly in the nucleus throughout the developing process while it was also localized at perinuclear region at 3 and 7 days in vitro. Notably, WAC was visualized in Tau-1-positive axons and MAP2-positive dendrites in a time-dependent manner. Taken together, results obtained here suggest that WAC plays a crucial role during brain development.


Assuntos
Transtornos do Neurodesenvolvimento , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Axônios , Hipocampo/metabolismo , Encéfalo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo
11.
Neurosci Biobehav Rev ; 152: 105299, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391113

RESUMO

'Dominant mutations in CAMK2B, encoding a subunit of the calcium/calmodulin-dependent protein kinase II (CAMK2), a serine/threonine kinase playing a key role in synaptic plasticity, learning and memory, underlie a recently characterized neurodevelopmental disorder (MRD54) characterized by delayed psychomotor development, mild to severe intellectual disability, hypotonia, and behavioral abnormalities. Targeted therapies to treat MRD54 are currently unavailable. In this review, we revise current knowledge on the molecular and cellular mechanisms underlying the altered neuronal function associated with defective CAMKIIß function. We also summarize the identified genotype-phenotype correlations and discuss the disease models that have been generated to profile the altered neuronal phenotype and understand the pathophysiology of this disease.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Neurônios , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Deficiência Intelectual/genética , Aprendizagem , Mutação/genética , Transtornos do Neurodesenvolvimento/metabolismo , Plasticidade Neuronal , Neurônios/fisiologia
12.
EMBO J ; 42(13): e113796, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37161785

RESUMO

In the last two decades, the term synaptopathy has been largely used to underline the concept that impairments of synaptic structure and function are the major determinant of brain disorders, including neurodevelopmental disorders. This notion emerged from the progress made in understanding the genetic architecture of neurodevelopmental disorders, which highlighted the convergence of genetic risk factors onto molecular pathways specifically localized at the synapse. However, the multifactorial origin of these disorders also indicated the key contribution of environmental factors. It is well recognized that inflammation is a risk factor for neurodevelopmental disorders, and several immune molecules critically contribute to synaptic dysfunction. In the present review, we highlight this concept, which we define by the term "immune-synaptopathy," and we discuss recent evidence suggesting a bi-directional link between the genetic architecture of individuals and maternal activation of the immune system in modulating brain developmental trajectories in health and disease.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , Família
13.
Protein Cell ; 14(10): 762-775, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37166201

RESUMO

The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Humanos , Eixo Encéfalo-Intestino , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo
14.
CNS Drugs ; 37(5): 399-440, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166702

RESUMO

The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.


Assuntos
Esclerose Lateral Amiotrófica , Doença de Huntington , Transtornos do Neurodesenvolvimento , Receptores sigma , Humanos , Receptores sigma/metabolismo , Receptores sigma/uso terapêutico , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/metabolismo
15.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1501-1512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249625

RESUMO

Infections during pregnancy are associated with an increased risk of neuropsychiatric disorders with developmental etiologies, such as schizophrenia and autism spectrum disorders (ASD). Studies have shown that the animal model of maternal immune activation (MIA) reproduces a wide range of phenotypes relevant to the study of neurodevelopmental disorders. Emerging evidence shows that (R)-ketamine attenuates behavioral, cellular, and molecular changes observed in animal models of neuropsychiatric disorders. Here, we investigate whether (R)-ketamine administration during adolescence attenuates some of the phenotypes related to neurodevelopmental disorders in an animal model of MIA. For MIA, pregnant Swiss mice received intraperitoneally (i.p.) lipopolysaccharide (LPS; 100 µg/kg/day) or saline on gestational days 15 and 16. The two MIA-based groups of male offspring received (R)-ketamine (20 mg/kg/day; i.p.) or saline from postnatal day (PND) 36 to 50. At PND 62, the animals were examined for anxiety-like behavior and locomotor activity in the open-field test (OFT), as well as in the social interaction test (SIT). At PND 63, the prefrontal cortex (PFC) was collected for analysis of oxidative balance and gene expression of the cytokines IL-1ß, IL-6, and TGF-ß1. We show that (R)-ketamine abolishes anxiety-related behavior and social interaction deficits induced by MIA. Additionally, (R)-ketamine attenuated the increase in lipid peroxidation and the cytokines in the PFC of the offspring exposed to MIA. The present work suggests that (R)-ketamine administration may have a long-lasting attenuation in deficits in emotional behavior induced by MIA, and that these effects may be attributed to its antioxidant and anti-inflammatory activity in the PFC.


Assuntos
Ketamina , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Gravidez , Animais , Humanos , Feminino , Masculino , Ketamina/efeitos adversos , Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Modelos Animais de Doenças , Citocinas , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo
16.
Biol Psychiatry ; 94(10): 780-791, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001843

RESUMO

BACKGROUND: Loss-of-function mutations in the contactin-associated protein-like 2 (CNTNAP2) gene are causal for neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and intellectual disability. CNTNAP2 encodes CASPR2, a single-pass transmembrane protein that belongs to the neurexin family of cell adhesion molecules. These proteins have a variety of functions in developing neurons, including connecting presynaptic and postsynaptic neurons, and mediating signaling across the synapse. METHODS: To study the effect of loss of CNTNAP2 function on human cerebral cortex development, and how this contributes to the pathogenesis of neurodevelopmental disorders, we generated human induced pluripotent stem cells from one neurotypical control donor null for full-length CNTNAP2, modeling cortical development from neurogenesis through to neural network formation in vitro. RESULTS: CNTNAP2 is particularly highly expressed in the first two populations of early-born excitatory cortical neurons, and loss of CNTNAP2 shifted the relative proportions of these two neuronal types. Live imaging of excitatory neuronal growth showed that loss of CNTNAP2 reduced neurite branching and overall neuronal complexity. At the network level, developing cortical excitatory networks null for CNTNAP2 had complex changes in activity compared with isogenic controls: an initial period of relatively reduced activity compared with isogenic controls, followed by a lengthy period of hyperexcitability, and then a further switch to reduced activity. CONCLUSIONS: Complete loss of CNTNAP2 contributes to the pathogenesis of neurodevelopmental disorders through complex changes in several aspects of human cerebral cortex excitatory neuron development that culminate in aberrant neural network formation and function.


Assuntos
Córtex Cerebral , Proteínas de Membrana , Rede Nervosa , Proteínas do Tecido Nervoso , Transtornos do Neurodesenvolvimento , Neurônios , Humanos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Córtex Cerebral/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função/genética , Mutação com Perda de Função/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo
17.
Mitochondrion ; 69: 18-32, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621534

RESUMO

Mitochondria have a crucial role in brain development and neurogenesis, both in embryonic and adult brains. Since the brain is the highest energy consuming organ, it is highly vulnerable to mitochondrial dysfunction. This has been implicated in a range of brain disorders including, neurodevelopmental conditions, psychiatric illnesses, and neurodegenerative diseases. Genetic variations in mitochondrial DNA (mtDNA), and nuclear DNA encoding mitochondrial proteins, have been associated with several cognitive disorders. However, it is not yet clear whether mitochondrial dysfunction is a primary cause of these conditions or a secondary effect. Our review article deals with this topic, and brings out recent advances in mitochondria-oriented therapies. Mitochondrial dysfunction could be involved in the pathogenesis of a subset of disorders involving cognitive impairment. In these patients, mitochondrial dysfunction could be the cause of the condition, rather than the consequence. There are vast areas in this topic that remains to be explored and elucidated.


Assuntos
Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Humanos , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/metabolismo , Cognição
18.
Sci Total Environ ; 869: 161738, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690096

RESUMO

Evidence suggests that fluoride-induced neurodevelopment damage is linked to mitochondrial disorder, yet the detailed mechanism remains unclear. A cohort of Sprague-Dawley rats developmentally exposed to sodium fluoride (NaF) was established to simulate actual exposure of human beings. Using high-input proteomics and small RNA sequencing technology in rat hippocampus, we found mitochondrial translation as the most striking enriched biological process after NaF treatment, which involves the differentially expressed Required Meiotic Nuclear Division 1 homolog (RMND1) and neural-specific miR-221-3p. Further experiments in vivo and in vitro neuroendocrine pheochromocytoma (PC12) cells demonstrated that NaF impaired mitochondrial translation and function, as shown by declined mitochondrial membrane potential and inhibited expression of mitochondrial translation factors, mitochondrial translation products, and OXPHOS complexes, which was concomitant with decreased RMND1 and transcription factor c-Fos in mRNA and proteins as well as elevated miR-221-3p. Notably, RMND1 overexpression alleviated the NaF-elicited mitochondrial translation impairment by up-regulating translation factors, but not vice versa. Interestingly, ChIP-qPCR confirmed that c-Fos specifically controls the RMND1 transcription through direct binding with Rmnd1 promotor. Interference of gene expression verified c-Fos as an upstream positive regulator of RMND1, implicating in fluoride-caused mitochondrial translation impairment. Furthermore, dual-luciferase reporter assay evidenced that miR-221-3p targets c-Fos by binding its 3' untranslated region. By modulating the miR-221-3p expression, we identified miR-221-3p as a critical negative regulator of c-Fos. More importantly, we proved that miR-221-3p inhibitor improved mitochondrial translation and mitochondrial function to combat NaF neurotoxicity via activating the c-Fos/RMND1 axis, whereas miR-221-3p mimic tended towards opposite effects. Collectively, our data suggest fluoride impairs mitochondrial translation by dysregulating the miR-221-3p/c-Fos/RMND1 axis to trigger mitochondrial dysfunction, leading to neuronal death and neurodevelopment defects.


Assuntos
Fluoretos , MicroRNAs , Transtornos do Neurodesenvolvimento , Animais , Humanos , Ratos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/farmacologia , Fluoretos/metabolismo , Fluoretos/toxicidade , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/patologia , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Células PC12 , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
19.
Hum Mol Genet ; 32(9): 1497-1510, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36579832

RESUMO

TBR1 is a neuron-specific transcription factor involved in brain development and implicated in a neurodevelopmental disorder (NDD) combining features of autism spectrum disorder (ASD), intellectual disability (ID) and speech delay. TBR1 has been previously shown to interact with a small number of transcription factors and co-factors also involved in NDDs (including CASK, FOXP1/2/4 and BCL11A), suggesting that the wider TBR1 interactome may have a significant bearing on normal and abnormal brain development. Here, we have identified approximately 250 putative TBR1-interaction partners by affinity purification coupled to mass spectrometry. As well as known TBR1-interactors such as CASK, the identified partners include transcription factors and chromatin modifiers, along with ASD- and ID-related proteins. Five interaction candidates were independently validated using bioluminescence resonance energy transfer assays. We went on to test the interaction of these candidates with TBR1 protein variants implicated in cases of NDD. The assays uncovered disturbed interactions for NDD-associated variants and identified two distinct protein-binding domains of TBR1 that have essential roles in protein-protein interaction.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas com Domínio T , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas/genética , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Hum Mol Genet ; 32(2): 218-230, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35947991

RESUMO

DNA methylation plays a critical function in establishing and maintaining cell identity in brain. Disruption of DNA methylation-related processes leads to diverse neurological disorders. However, the role of DNA methylation characteristics in neuronal diversity remains underexplored. Here, we report detailed context-specific DNA methylation maps for GABAergic, glutamatergic (Glu) and Purkinje neurons, together with matched transcriptome profiles. Genome-wide mCH levels are distinguishable, while the mCG levels are similar among the three cell types. Substantial CG-differentially methylated regions (DMRs) are also seen, with Glu neurons experiencing substantial hypomethylation events. The relationship between mCG levels and gene expression displays cell type-specific patterns, while genic CH methylation exhibits a negative effect on transcriptional abundance. We found that cell type-specific CG-DMRs are informative in terms of represented neuronal function. Furthermore, we observed that the identified Glu-specific hypo-DMRs have a high level of consistency with the chromatin accessibility of excitatory neurons and the regions enriched for histone modifications (H3K27ac and H3K4me1) of active enhancers, suggesting their regulatory potential. Hypomethylation regions specific to each cell type are predicted to bind neuron type-specific transcription factors. Finally, we show that the DNA methylation changes in a mouse model of Rett syndrome, a neurodevelopmental disorder caused by the de novo mutations in MECP2, are cell type- and brain region-specific. Our results suggest that cell type-specific DNA methylation signatures are associated with the functional characteristics of the neuronal subtypes. The presented results emphasize the importance of DNA methylation-mediated epigenetic regulation in neuronal diversity and disease.


Assuntos
Epigênese Genética , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Epigenoma , Metilação de DNA/genética , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA